
multiprocessing Documentation
Release 3.5.0.0

Python Software Foundation

August 04, 2016

Contents

1 multiprocessing — Process-based parallelism 3
1.1 Introduction . 3
1.2 Reference . 7
1.3 Programming guidelines . 29
1.4 Examples . 32

2 Glossary 53

3 Indices and tables 55

Python Module Index 57

i

ii

multiprocessing Documentation, Release 3.5.0.0

Contents:

Contents 1

multiprocessing Documentation, Release 3.5.0.0

2 Contents

CHAPTER 1

multiprocessing — Process-based parallelism

1.1 Introduction

multiprocessing is a package that supports spawning processes using an API similar to the threading mod-
ule. The multiprocessing package offers both local and remote concurrency, effectively side-stepping the Global
Interpreter Lock by using subprocesses instead of threads. Due to this, the multiprocessing module allows the
programmer to fully leverage multiple processors on a given machine. It runs on both Unix and Windows.

Note: Some of this package’s functionality requires a functioning shared semaphore implementation on the host
operating system. Without one, the multiprocessing.synchronize module will be disabled, and attempts to
import it will result in an ImportError. See :issue:‘3770‘ for additional information.

Note: Functionality within this package requires that the __main__ module be importable by the children. This is
covered in Programming guidelines however it is worth pointing out here. This means that some examples, such as
the multiprocessing.Pool examples will not work in the interactive interpreter. For example:

>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'
AttributeError: 'module' object has no attribute 'f'

(If you try this it will actually output three full tracebacks interleaved in a semi-random fashion, and then you may
have to stop the master process somehow.)

1.1.1 The Process class

In multiprocessing, processes are spawned by creating a Process object and then calling its start()
method. Process follows the API of threading.Thread. A trivial example of a multiprocess program is

3

multiprocessing Documentation, Release 3.5.0.0

from multiprocessing import Process

def f(name):
print('hello', name)

if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()

To show the individual process IDs involved, here is an expanded example:

from multiprocessing import Process
import os

def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())

def f(name):
info('function f')
print('hello', name)

if __name__ == '__main__':
info('main line')
p = Process(target=f, args=('bob',))
p.start()
p.join()

For an explanation of why (on Windows) the if __name__ == ’__main__’ part is necessary, see Programming
guidelines.

1.1.2 Exchanging objects between processes

multiprocessing supports two types of communication channel between processes:

Queues

The Queue class is a near clone of Queue.Queue. For example:

from multiprocessing import Process, Queue

def f(q):
q.put([42, None, 'hello'])

if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print(q.get()) # prints "[42, None, 'hello']"
p.join()

Queues are thread and process safe, but note that they must never be instantiated as a side effect of
importing a module: this can lead to a deadlock! (see threaded-imports)

Pipes

4 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

The Pipe() function returns a pair of connection objects connected by a pipe which by default is duplex
(two-way). For example:

from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, 'hello'])
conn.close()

if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, 'hello']"
p.join()

The two connection objects returned by Pipe() represent the two ends of the pipe. Each connection
object has send() and recv()methods (among others). Note that data in a pipe may become corrupted
if two processes (or threads) try to read from or write to the same end of the pipe at the same time. Of
course there is no risk of corruption from processes using different ends of the pipe at the same time.

1.1.3 Synchronization between processes

multiprocessing contains equivalents of all the synchronization primitives from threading. For instance one
can use a lock to ensure that only one process prints to standard output at a time:

from multiprocessing import Process, Lock

def f(l, i):
l.acquire()
print('hello world', i)
l.release()

if __name__ == '__main__':
lock = Lock()

for num in range(10):
Process(target=f, args=(lock, num)).start()

Without using the lock output from the different processes is liable to get all mixed up.

1.1.4 Sharing state between processes

As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as
possible. This is particularly true when using multiple processes.

However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing
so.

Shared memory

Data can be stored in a shared memory map using Value or Array . For example, the following code

from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927

1.1. Introduction 5

multiprocessing Documentation, Release 3.5.0.0

for i in range(len(a)):
a[i] = -a[i]

if __name__ == '__main__':
num = Value('d', 0.0)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print(num.value)
print(arr[:])

will print

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

The ’d’ and ’i’ arguments used when creating num and arr are typecodes of the kind used by the
array module: ’d’ indicates a double precision float and ’i’ indicates a signed integer. These shared
objects will be process and thread-safe.

For more flexibility in using shared memory one can use the multiprocessing.sharedctypes
module which supports the creation of arbitrary ctypes objects allocated from shared memory.

Server process

A manager object returned by Manager() controls a server process which holds Python objects and
allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock,
Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array . For exam-
ple,

from multiprocessing import Process, Manager

def f(d, l):
d[1] = '1'
d['2'] = 2
d[0.25] = None
l.reverse()

if __name__ == '__main__':
manager = Manager()

d = manager.dict()
l = manager.list(range(10))

p = Process(target=f, args=(d, l))
p.start()
p.join()

print(d)
print(l)

will print

{0.25: None, 1: '1', '2': 2}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

6 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

Server process managers are more flexible than using shared memory objects because they can be made to
support arbitrary object types. Also, a single manager can be shared by processes on different computers
over a network. They are, however, slower than using shared memory.

1.1.5 Using a pool of workers

The Pool class represents a pool of worker processes. It has methods which allows tasks to be offloaded to the worker
processes in a few different ways.

For example:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes
result = pool.apply_async(f, [10]) # evaluate "f(10)" asynchronously
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow
print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

1.2 Reference

The multiprocessing package mostly replicates the API of the threading module.

1.2.1 Process and exceptions

class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]], daemon=None)
Process objects represent activity that is run in a separate process. The Process class has equivalents of all
the methods of threading.Thread.

The constructor should always be called with keyword arguments. group should always be None; it exists
solely for compatibility with threading.Thread. target is the callable object to be invoked by the run()
method. It defaults to None, meaning nothing is called. name is the process name. By default, a unique name
is constructed of the form ‘Process-N1:N2:...:Nk‘ where N1,N2,...,Nk is a sequence of integers whose length is
determined by the generation of the process. args is the argument tuple for the target invocation. kwargs is a
dictionary of keyword arguments for the target invocation. If provided, the keyword-only daemon argument sets
the process daemon flag to True or False. If None (the default), this flag will be inherited from the creating
process.

By default, no arguments are passed to target.

If a subclass overrides the constructor, it must make sure it invokes the base class constructor
(Process.__init__()) before doing anything else to the process.

Changed in version 3.3: Added the daemon argument.

run()
Method representing the process’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object
passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments
taken from the args and kwargs arguments, respectively.

1.2. Reference 7

multiprocessing Documentation, Release 3.5.0.0

start()
Start the process’s activity.

This must be called at most once per process object. It arranges for the object’s run() method to be
invoked in a separate process.

join([timeout])
If the optional argument timeout is None (the default), the method blocks until the process whose join()
method is called terminates. If timeout is a positive number, it blocks at most timeout seconds.

A process can be joined many times.

A process cannot join itself because this would cause a deadlock. It is an error to attempt to join a process
before it has been started.

name
The process’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple processes may be
given the same name. The initial name is set by the constructor.

is_alive()
Return whether the process is alive.

Roughly, a process object is alive from the moment the start() method returns until the child process
terminates.

daemon
The process’s daemon flag, a Boolean value. This must be set before start() is called.

The initial value is inherited from the creating process.

When a process exits, it attempts to terminate all of its daemonic child processes.

Note that a daemonic process is not allowed to create child processes. Otherwise a daemonic process
would leave its children orphaned if it gets terminated when its parent process exits. Additionally, these
are not Unix daemons or services, they are normal processes that will be terminated (and not joined) if
non-daemonic processes have exited.

In addition to the Threading.Thread API, Process objects also support the following attributes and
methods:

pid
Return the process ID. Before the process is spawned, this will be None.

exitcode
The child’s exit code. This will be None if the process has not yet terminated. A negative value -N
indicates that the child was terminated by signal N.

authkey
The process’s authentication key (a byte string).

When multiprocessing is initialized the main process is assigned a random string using
os.random().

When a Process object is created, it will inherit the authentication key of its parent process, although
this may be changed by setting authkey to another byte string.

See Authentication keys.

sentinel
A numeric handle of a system object which will become “ready” when the process ends.

8 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

You can use this value if you want to wait on several events at once using
multiprocessing.connection.wait(). Otherwise calling join() is simpler.

On Windows, this is an OS handle usable with the WaitForSingleObject and
WaitForMultipleObjects family of API calls. On Unix, this is a file descriptor usable with
primitives from the select module.

New in version 3.3.

terminate()
Terminate the process. On Unix this is done using the SIGTERM signal; on Windows
TerminateProcess() is used. Note that exit handlers and finally clauses, etc., will not be executed.

Note that descendant processes of the process will not be terminated – they will simply become orphaned.

Warning: If this method is used when the associated process is using a pipe or queue then the pipe
or queue is liable to become corrupted and may become unusable by other process. Similarly, if the
process has acquired a lock or semaphore etc. then terminating it is liable to cause other processes to
deadlock.

Note that the start(), join(), is_alive(), terminate() and exit_code methods should only be
called by the process that created the process object.

Example usage of some of the methods of Process:

exception multiprocessing.BufferTooShort
Exception raised by Connection.recv_bytes_into() when the supplied buffer object is too small for
the message read.

If e is an instance of BufferTooShort then e.args[0] will give the message as a byte string.

1.2.2 Pipes and Queues

When using multiple processes, one generally uses message passing for communication between processes and avoids
having to use any synchronization primitives like locks.

For passing messages one can use Pipe() (for a connection between two processes) or a queue (which allows
multiple producers and consumers).

The Queue, SimpleQueue and JoinableQueue types are multi-producer, multi-consumer FIFO queues mod-
elled on the Queue.Queue class in the standard library. They differ in that Queue lacks the task_done() and
join() methods introduced into Python 2.5’s queue.Queue class.

If you use JoinableQueue then you must call JoinableQueue.task_done() for each task removed from
the queue or else the semaphore used to count the number of unfinished tasks may eventually overflow, raising an
exception.

Note that one can also create a shared queue by using a manager object – see Managers.

Note: multiprocessing uses the usual Queue.Empty and Queue.Full exceptions to signal a timeout. They
are not available in the multiprocessing namespace so you need to import them from queue.

Warning: If a process is killed using Process.terminate() or os.kill() while it is trying to use a
Queue, then the data in the queue is likely to become corrupted. This may cause any other process to get an
exception when it tries to use the queue later on.

1.2. Reference 9

multiprocessing Documentation, Release 3.5.0.0

Warning: As mentioned above, if a child process has put items on a queue (and it has not used
JoinableQueue.cancel_join_thread()), then that process will not terminate until all buffered items
have been flushed to the pipe.
This means that if you try joining that process you may get a deadlock unless you are sure that all items which
have been put on the queue have been consumed. Similarly, if the child process is non-daemonic then the parent
process may hang on exit when it tries to join all its non-daemonic children.
Note that a queue created using a manager does not have this issue. See Programming guidelines.

For an example of the usage of queues for interprocess communication see Examples.

multiprocessing.Pipe([duplex])
Returns a pair (conn1, conn2) of Connection objects representing the ends of a pipe.

If duplex is True (the default) then the pipe is bidirectional. If duplex is False then the pipe is unidirectional:
conn1 can only be used for receiving messages and conn2 can only be used for sending messages.

class multiprocessing.Queue([maxsize])
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first
puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.

The usual Queue.Empty and Queue.Full exceptions from the standard library’s Queue module are raised
to signal timeouts.

Queue implements all the methods of Queue.Queue except for task_done() and join().

qsize()
Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this
number is not reliable.

Note that this may raise NotImplementedError on Unix platforms like macOS where
sem_getvalue() is not implemented.

empty()
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing seman-
tics, this is not reliable.

full()
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing semantics,
this is not reliable.

put(obj[, block[, timeout]])
Put obj into the queue. If the optional argument block is True (the default) and timeout is None (the
default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most
timeout seconds and raises the queue.Full exception if no free slot was available within that time.
Otherwise (block is False), put an item on the queue if a free slot is immediately available, else raise the
queue.Full exception (timeout is ignored in that case).

put_nowait(obj)
Equivalent to put(obj, False).

get([block[, timeout]])
Remove and return an item from the queue. If optional args block is True (the default) and timeout is
None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks
at most timeout seconds and raises the queue.Empty exception if no item was available within that time.
Otherwise (block is False), return an item if one is immediately available, else raise the queue.Empty
exception (timeout is ignored in that case).

get_nowait()
get_no_wait()

Equivalent to get(False).

10 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

multiprocessing.Queue has a few additional methods not found in queue.Queue. These methods are
usually unnecessary for most code:

close()
Indicate that no more data will be put on this queue by the current process. The background thread will
quit once it has flushed all buffered data to the pipe. This is called automatically when the queue is garbage
collected.

join_thread()
Join the background thread. This can only be used after close() has been called. It blocks until the
background thread exits, ensuring that all data in the buffer has been flushed to the pipe.

By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s
background thread. The process can call cancel_join_thread() to make join_thread() do
nothing.

cancel_join_thread()
Prevent join_thread() from blocking. In particular, this prevents the background thread from being
joined automatically when the process exits – see join_thread().

class multiprocessing.SimpleQueue
It is a simplified Queue type, very close to a locked Pipe.

empty()
Return True if the queue is empty, False otherwise.

get()
Remove and return an item from the queue.

put(item)
Put item into the queue.

class multiprocessing.JoinableQueue([maxsize])
JoinableQueue, a Queue subclass, is a queue which additionally has task_done() and join() meth-
ods.

task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get()
used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is
complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

join()
Block until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down
whenever a consumer thread calls task_done() to indicate that the item was retrieved and all work on
it is complete. When the count of unfinished tasks drops to zero, join() unblocks.

1.2.3 Miscellaneous

multiprocessing.active_children()
Return list of all live children of the current process.

Calling this has the side affect of “joining” any processes which have already finished.

1.2. Reference 11

multiprocessing Documentation, Release 3.5.0.0

multiprocessing.cpu_count()
Return the number of CPUs in the system. May raise NotImplementedError.

multiprocessing.current_process()
Return the Process object corresponding to the current process.

An analogue of threading.current_thread().

multiprocessing.freeze_support()
Add support for when a program which uses multiprocessing has been frozen to produce a Windows
executable. (Has been tested with py2exe, PyInstaller and cx_Freeze.)

One needs to call this function straight after the if __name__ == ’__main__’ line of the main module.
For example:

from multiprocessing import Process, freeze_support

def f():
print('hello world!')

if __name__ == '__main__':
freeze_support()
Process(target=f).start()

If the freeze_support() line is omitted then trying to run the frozen executable will raise
RuntimeError.

If the module is being run normally by the Python interpreter then freeze_support() has no effect.

multiprocessing.set_executable()
Sets the path of the Python interpreter to use when starting a child process. (By default sys.executable is
used). Embedders will probably need to do some thing like

set_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))

before they can create child processes. (Windows only)

Note: multiprocessing contains no analogues of threading.active_count(),
threading.enumerate(), threading.settrace(), threading.setprofile(),
threading.Timer, or threading.local.

1.2.4 Connection Objects

Connection objects allow the sending and receiving of picklable objects or strings. They can be thought of as message
oriented connected sockets.

Connection objects are usually created using Pipe() – see also Listeners and Clients.

class multiprocessing.Connection

send(obj)
Send an object to the other end of the connection which should be read using recv().

The object must be picklable. Very large pickles (approximately 32 MB+, though it depends on the OS)
may raise a ValueError exception.

12 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

recv()
Return an object sent from the other end of the connection using send(). Blocks until there its something
to receive. Raises EOFError if there is nothing left to receive and the other end was closed.

fileno()
Return the file descriptor or handle used by the connection.

close()
Close the connection.

This is called automatically when the connection is garbage collected.

poll([timeout])
Return whether there is any data available to be read.

If timeout is not specified then it will return immediately. If timeout is a number then this specifies the
maximum time in seconds to block. If timeout is None then an infinite timeout is used.

Note that multiple connection objects may be polled at once by using
multiprocessing.connection.wait().

send_bytes(buffer[, offset[, size]])
Send byte data from an object supporting the buffer interface as a complete message.

If offset is given then data is read from that position in buffer. If size is given then that many bytes will be
read from buffer. Very large buffers (approximately 32 MB+, though it depends on the OS) may raise a
ValueError exception

recv_bytes([maxlength])
Return a complete message of byte data sent from the other end of the connection as a string. Blocks until
there is something to receive. Raises EOFError if there is nothing left to receive and the other end has
closed.

If maxlength is specified and the message is longer than maxlength then OSError is raised and the con-
nection will no longer be readable.

Changed in version 3.3: This function used to raise a IOError, which is now an alias of OSError.

recv_bytes_into(buffer[, offset])
Read into buffer a complete message of byte data sent from the other end of the connection and return the
number of bytes in the message. Blocks until there is something to receive. Raises EOFError if there is
nothing left to receive and the other end was closed.

buffer must be an object satisfying the writable buffer interface. If offset is given then the message will
be written into the buffer from that position. Offset must be a non-negative integer less than the length of
buffer (in bytes).

If the buffer is too short then a BufferTooShort exception is raised and the complete message is
available as e.args[0] where e is the exception instance.

For example:

Warning: The Connection.recv() method automatically unpickles the data it receives, which can be a
security risk unless you can trust the process which sent the message.
Therefore, unless the connection object was produced using Pipe() you should only use the recv() and
send() methods after performing some sort of authentication. See Authentication keys.

Warning: If a process is killed while it is trying to read or write to a pipe then the data in the pipe is likely to
become corrupted, because it may become impossible to be sure where the message boundaries lie.

1.2. Reference 13

multiprocessing Documentation, Release 3.5.0.0

1.2.5 Synchronization primitives

Generally synchronization primitives are not as necessary in a multiprocess program as they are in a multithreaded
program. See the documentation for threading module.

Note that one can also create synchronization primitives by using a manager object – see Managers.

class multiprocessing.BoundedSemaphore([value])
A bounded semaphore object: a clone of threading.BoundedSemaphore.

(On macOS, this is indistinguishable from Semaphore because sem_getvalue() is not implemented on
that platform).

class multiprocessing.Condition([lock])
A condition variable: a clone of threading.Condition.

If lock is specified then it should be a Lock or RLock object from multiprocessing.

Changed in version 3.3: The wait_for() method was added.

class multiprocessing.Event
A clone of threading.Event. This method returns the state of the internal semaphore on exit, so it will
always return True except if a timeout is given and the operation times out.

Changed in version 3.1: Previously, the method always returned None.

class multiprocessing.Lock
A non-recursive lock object: a clone of threading.Lock.

class multiprocessing.RLock
A recursive lock object: a clone of threading.RLock.

class multiprocessing.Semaphore([value])
A semaphore object: a clone of threading.Semaphore.

Note: On macOS, sem_timedwait is unsupported, so calling acquire() with a timeout will emulate that
function’s behavior using a sleeping loop.

Note: If the SIGINT signal generated by Ctrl-C arrives while the main thread is blocked by a call to
BoundedSemaphore.acquire(), Lock.acquire(), RLock.acquire(), Semaphore.acquire(),
Condition.acquire() or Condition.wait() then the call will be immediately interrupted and
KeyboardInterrupt will be raised.

This differs from the behaviour of threading where SIGINT will be ignored while the equivalent blocking calls are
in progress.

1.2.6 Shared ctypes Objects

It is possible to create shared objects using shared memory which can be inherited by child processes.

multiprocessing.Value(typecode_or_type, *args[, lock])
Return a ctypes object allocated from shared memory. By default the return value is actually a synchronized
wrapper for the object.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character typecode
of the kind used by the array module. *args is passed on to the constructor for the type.

14 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.Array(typecode_or_type, size_or_initializer, *, lock=True)
Return a ctypes array allocated from shared memory. By default the return value is actually a synchronized
wrapper for the array.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one
character typecode of the kind used by the array module. If size_or_initializer is an integer, then it determines
the length of the array, and the array will be initially zeroed. Otherwise, size_or_initializer is a sequence which
is used to initialize the array and whose length determines the length of the array.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword only argument.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings.

The multiprocessing.sharedctypes module

The multiprocessing.sharedctypes module provides functions for allocating ctypes objects from shared
memory which can be inherited by child processes.

Note: Although it is possible to store a pointer in shared memory remember that this will refer to a location in the
address space of a specific process. However, the pointer is quite likely to be invalid in the context of a second process
and trying to dereference the pointer from the second process may cause a crash.

multiprocessing.sharedctypes.RawArray(typecode_or_type, size_or_initializer)
Return a ctypes array allocated from shared memory.

typecode_or_type determines the type of the elements of the returned array: it is either a ctypes type or a one
character typecode of the kind used by the array module. If size_or_initializer is an integer then it determines
the length of the array, and the array will be initially zeroed. Otherwise size_or_initializer is a sequence which
is used to initialize the array and whose length determines the length of the array.

Note that setting and getting an element is potentially non-atomic – use Array() instead to make sure that
access is automatically synchronized using a lock.

multiprocessing.sharedctypes.RawValue(typecode_or_type, *args)
Return a ctypes object allocated from shared memory.

typecode_or_type determines the type of the returned object: it is either a ctypes type or a one character typecode
of the kind used by the array module. *args is passed on to the constructor for the type.

Note that setting and getting the value is potentially non-atomic – use Value() instead to make sure that access
is automatically synchronized using a lock.

Note that an array of ctypes.c_char has value and raw attributes which allow one to use it to store and
retrieve strings – see documentation for ctypes.

multiprocessing.sharedctypes.Array(typecode_or_type, size_or_initializer, *args[, lock])
The same as RawArray() except that depending on the value of lock a process-safe synchronization wrapper
may be returned instead of a raw ctypes array.

1.2. Reference 15

multiprocessing Documentation, Release 3.5.0.0

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.Value(typecode_or_type, *args[, lock])
The same as RawValue() except that depending on the value of lock a process-safe synchronization wrapper
may be returned instead of a raw ctypes object.

If lock is True (the default) then a new lock object is created to synchronize access to the value. If lock is a
Lock or RLock object then that will be used to synchronize access to the value. If lock is False then access
to the returned object will not be automatically protected by a lock, so it will not necessarily be “process-safe”.

Note that lock is a keyword-only argument.

multiprocessing.sharedctypes.copy(obj)
Return a ctypes object allocated from shared memory which is a copy of the ctypes object obj.

multiprocessing.sharedctypes.synchronized(obj[, lock])
Return a process-safe wrapper object for a ctypes object which uses lock to synchronize access. If lock is None
(the default) then a multiprocessing.RLock object is created automatically.

A synchronized wrapper will have two methods in addition to those of the object it wraps: get_obj() returns
the wrapped object and get_lock() returns the lock object used for synchronization.

Note that accessing the ctypes object through the wrapper can be a lot slower than accessing the raw ctypes
object.

The table below compares the syntax for creating shared ctypes objects from shared memory with the normal ctypes
syntax. (In the table MyStruct is some subclass of ctypes.Structure.)

ctypes sharedctypes using type sharedctypes using typecode
c_double(2.4) RawValue(c_double, 2.4) RawValue(‘d’, 2.4)
MyStruct(4, 6) RawValue(MyStruct, 4, 6)
(c_short * 7)() RawArray(c_short, 7) RawArray(‘h’, 7)
(c_int * 3)(9, 2, 8) RawArray(c_int, (9, 2, 8)) RawArray(‘i’, (9, 2, 8))

Below is an example where a number of ctypes objects are modified by a child process:

from multiprocessing import Process, Lock
from multiprocessing.sharedctypes import Value, Array
from ctypes import Structure, c_double

class Point(Structure):
fields = [('x', c_double), ('y', c_double)]

def modify(n, x, s, A):
n.value **= 2
x.value **= 2
s.value = s.value.upper()
for a in A:

a.x **= 2
a.y **= 2

if __name__ == '__main__':
lock = Lock()

n = Value('i', 7)
x = Value(c_double, 1.0/3.0, lock=False)
s = Array('c', 'hello world', lock=lock)

16 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

A = Array(Point, [(1.875,-6.25), (-5.75,2.0), (2.375,9.5)], lock=lock)

p = Process(target=modify, args=(n, x, s, A))
p.start()
p.join()

print(n.value)
print(x.value)
print(s.value)
print([(a.x, a.y) for a in A])

The results printed are

49
0.1111111111111111
HELLO WORLD
[(3.515625, 39.0625), (33.0625, 4.0), (5.640625, 90.25)]

1.2.7 Managers

Managers provide a way to create data which can be shared between different processes. A manager object controls a
server process which manages shared objects. Other processes can access the shared objects by using proxies.

multiprocessing.Manager()
Returns a started SyncManager object which can be used for sharing objects between processes. The returned
manager object corresponds to a spawned child process and has methods which will create shared objects and
return corresponding proxies.

Manager processes will be shutdown as soon as they are garbage collected or their parent process exits. The manager
classes are defined in the multiprocessing.managers module:

class multiprocessing.managers.BaseManager([address[, authkey]])
Create a BaseManager object.

Once created one should call start() or get_server().serve_forever() to ensure that the manager
object refers to a started manager process.

address is the address on which the manager process listens for new connections. If address is None then an
arbitrary one is chosen.

authkey is the authentication key which will be used to check the validity of incoming connections to the server
process. If authkey is None then current_process().authkey. Otherwise authkey is used and it must
be a string.

start([initializer[, initargs]])
Start a subprocess to start the manager. If initializer is not None then the subprocess will call
initializer(*initargs) when it starts.

get_server()
Returns a Server object which represents the actual server under the control of the Manager. The
Server object supports the serve_forever() method:

>>> from multiprocessing.managers import BaseManager
>>> manager = BaseManager(address=('', 50000), authkey='abc')
>>> server = manager.get_server()
>>> server.serve_forever()

Server additionally has an address attribute.

1.2. Reference 17

multiprocessing Documentation, Release 3.5.0.0

connect()
Connect a local manager object to a remote manager process:

>>> from multiprocessing.managers import BaseManager
>>> m = BaseManager(address=('127.0.0.1', 5000), authkey='abc')
>>> m.connect()

shutdown()
Stop the process used by the manager. This is only available if start() has been used to start the server
process.

This can be called multiple times.

register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])
A classmethod which can be used for registering a type or callable with the manager class.

typeid is a “type identifier” which is used to identify a particular type of shared object. This must be a
string.

callable is a callable used for creating objects for this type identifier. If a manager instance will be created
using the from_address() classmethod or if the create_method argument is False then this can be
left as None.

proxytype is a subclass of BaseProxy which is used to create proxies for shared objects with this typeid.
If None then a proxy class is created automatically.

exposed is used to specify a sequence of method names which proxies for this typeid should be allowed to
access using BaseProxy._callMethod(). (If exposed is None then proxytype._exposed_ is
used instead if it exists.) In the case where no exposed list is specified, all “public methods” of the shared
object will be accessible. (Here a “public method” means any attribute which has a __call__() method
and whose name does not begin with ’_’.)

method_to_typeid is a mapping used to specify the return type of those exposed methods which
should return a proxy. It maps method names to typeid strings. (If method_to_typeid is None then
proxytype._method_to_typeid_ is used instead if it exists.) If a method’s name is not a key
of this mapping or if the mapping is None then the object returned by the method will be copied by value.

create_method determines whether a method should be created with name typeid which can be used to tell
the server process to create a new shared object and return a proxy for it. By default it is True.

BaseManager instances also have one read-only property:

address
The address used by the manager.

class multiprocessing.managers.SyncManager
A subclass of BaseManager which can be used for the synchronization of processes. Objects of this type are
returned by multiprocessing.Manager().

It also supports creation of shared lists and dictionaries.

BoundedSemaphore([value])
Create a shared threading.BoundedSemaphore object and return a proxy for it.

Condition([lock])
Create a shared threading.Condition object and return a proxy for it.

If lock is supplied then it should be a proxy for a threading.Lock or threading.RLock object.

Changed in version 3.3: The wait_for() method was added.

Event()
Create a shared threading.Event object and return a proxy for it.

18 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

Lock()
Create a shared threading.Lock object and return a proxy for it.

Namespace()
Create a shared Namespace object and return a proxy for it.

Queue([maxsize])
Create a shared Queue.Queue object and return a proxy for it.

RLock()
Create a shared threading.RLock object and return a proxy for it.

Semaphore([value])
Create a shared threading.Semaphore object and return a proxy for it.

Array(typecode, sequence)
Create an array and return a proxy for it.

Value(typecode, value)
Create an object with a writable value attribute and return a proxy for it.

dict()
dict(mapping)
dict(sequence)

Create a shared dict object and return a proxy for it.

list()
list(sequence)

Create a shared list object and return a proxy for it.

Note: Modifications to mutable values or items in dict and list proxies will not be propagated through the
manager, because the proxy has no way of knowing when its values or items are modified. To modify such an
item, you can re-assign the modified object to the container proxy:

create a list proxy and append a mutable object (a dictionary)
lproxy = manager.list()
lproxy.append({})
now mutate the dictionary
d = lproxy[0]
d['a'] = 1
d['b'] = 2
at this point, the changes to d are not yet synced, but by
reassigning the dictionary, the proxy is notified of the change
lproxy[0] = d

Namespace objects

A namespace object has no public methods, but does have writable attributes. Its representation shows the values of
its attributes.

However, when using a proxy for a namespace object, an attribute beginning with ’_’ will be an attribute of the proxy
and not an attribute of the referent:

Customized managers

To create one’s own manager, one creates a subclass of BaseManager and uses the register() classmethod to
register new types or callables with the manager class. For example:

1.2. Reference 19

multiprocessing Documentation, Release 3.5.0.0

from multiprocessing.managers import BaseManager

class MathsClass:
def add(self, x, y):

return x + y
def mul(self, x, y):

return x * y

class MyManager(BaseManager):
pass

MyManager.register('Maths', MathsClass)

if __name__ == '__main__':
manager = MyManager()
manager.start()
maths = manager.Maths()
print(maths.add(4, 3)) # prints 7
print(maths.mul(7, 8)) # prints 56

Using a remote manager

It is possible to run a manager server on one machine and have clients use it from other machines (assuming that the
firewalls involved allow it).

Running the following commands creates a server for a single shared queue which remote clients can access:

>>> from multiprocessing.managers import BaseManager
>>> import queue
>>> queue = Queue.Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue', callable=lambda:queue)
>>> m = QueueManager(address=('', 50000), authkey='abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()

One client can access the server as follows:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> Queue.put('hello')

Another client can also use it:

>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey='abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> Queue.get()
'hello'

Local processes can also access that queue, using the code from above on the client to access it remotely:

20 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super(Worker, self).__init__()
... def run(self):
... self.q.put('local hello')
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register('get_queue', callable=lambda: queue)
>>> m = QueueManager(address=('', 50000), authkey='abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()

1.2.8 Proxy Objects

A proxy is an object which refers to a shared object which lives (presumably) in a different process. The shared object
is said to be the referent of the proxy. Multiple proxy objects may have the same referent.

A proxy object has methods which invoke corresponding methods of its referent (although not every method of the
referent will necessarily be available through the proxy). A proxy can usually be used in most of the same ways that
its referent can:

Notice that applying str() to a proxy will return the representation of the referent, whereas applying repr() will
return the representation of the proxy.

An important feature of proxy objects is that they are picklable so they can be passed between processes. Note,
however, that if a proxy is sent to the corresponding manager’s process then unpickling it will produce the referent
itself. This means, for example, that one shared object can contain a second:

Note: The proxy types in multiprocessing do nothing to support comparisons by value. So, for instance, we
have:

One should just use a copy of the referent instead when making comparisons.

class multiprocessing.managers.BaseProxy
Proxy objects are instances of subclasses of BaseProxy .

_callmethod(methodname[, args[, kwds]])
Call and return the result of a method of the proxy’s referent.

If proxy is a proxy whose referent is obj then the expression

proxy._callmethod(methodname, args, kwds)

will evaluate the expression

getattr(obj, methodname)(*args, **kwds)

in the manager’s process.

The returned value will be a copy of the result of the call or a proxy to a new shared object – see documen-
tation for the method_to_typeid argument of BaseManager.register().

1.2. Reference 21

multiprocessing Documentation, Release 3.5.0.0

If an exception is raised by the call, then is re-raised by _callmethod(). If some other exception is
raised in the manager’s process then this is converted into a RemoteError exception and is raised by
_callmethod().

Note in particular that an exception will be raised if methodname has not been exposed

An example of the usage of _callmethod():

_getvalue()
Return a copy of the referent.

If the referent is unpicklable then this will raise an exception.

__repr__()
Return a representation of the proxy object.

__str__()
Return the representation of the referent.

Cleanup

A proxy object uses a weakref callback so that when it gets garbage collected it deregisters itself from the manager
which owns its referent.

A shared object gets deleted from the manager process when there are no longer any proxies referring to it.

1.2.9 Process Pools

One can create a pool of processes which will carry out tasks submitted to it with the Pool class.

class multiprocessing.Pool([processes[, initializer[, initargs[, maxtasksperchild]]]])
A process pool object which controls a pool of worker processes to which jobs can be submitted. It supports
asynchronous results with timeouts and callbacks and has a parallel map implementation.

processes is the number of worker processes to use. If processes is None then the number re-
turned by cpu_count() is used. If initializer is not None then each worker process will call
initializer(*initargs) when it starts.

New in version 3.2: maxtasksperchild is the number of tasks a worker process can complete before it will exit and
be replaced with a fresh worker process, to enable unused resources to be freed. The default maxtasksperchild
is None, which means worker processes will live as long as the pool.

Note: Worker processes within a Pool typically live for the complete duration of the Pool’s work queue. A
frequent pattern found in other systems (such as Apache, mod_wsgi, etc) to free resources held by workers is to
allow a worker within a pool to complete only a set amount of work before being exiting, being cleaned up and
a new process spawned to replace the old one. The maxtasksperchild argument to the Pool exposes this ability
to the end user.

apply(func[, args[, kwds]])
Call func with arguments args and keyword arguments kwds. It blocks until the result is ready. Given
this blocks, apply_async() is better suited for performing work in parallel. Additionally, func is only
executed in one of the workers of the pool.

apply_async(func[, args[, kwds[, callback[, error_callback]]]])
A variant of the apply() method which returns a result object.

22 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback is
applied instead

If error_callback is specified then it should be a callable which accepts a single argument. If the target
function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will get
blocked.

map(func, iterable[, chunksize])
A parallel equivalent of the map() built-in function (it supports only one iterable argument though). It
blocks until the result is ready.

This method chops the iterable into a number of chunks which it submits to the process pool as separate
tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.

map_async(func, iterable[, chunksize[, callback[, error_callback]]])
A variant of the map() method which returns a result object.

If callback is specified then it should be a callable which accepts a single argument. When the result
becomes ready callback is applied to it, that is unless the call failed, in which case the error_callback is
applied instead

If error_callback is specified then it should be a callable which accepts a single argument. If the target
function fails, then the error_callback is called with the exception instance.

Callbacks should complete immediately since otherwise the thread which handles the results will get
blocked.

imap(func, iterable[, chunksize])
A lazier version of map().

The chunksize argument is the same as the one used by the map() method. For very long iterables using
a large value for chunksize can make the job complete much faster than using the default value of 1.

Also if chunksize is 1 then the next() method of the iterator returned by the imap() method has an
optional timeout parameter: next(timeout) will raise multiprocessing.TimeoutError if the
result cannot be returned within timeout seconds.

imap_unordered(func, iterable[, chunksize])
The same as imap() except that the ordering of the results from the returned iterator should be considered
arbitrary. (Only when there is only one worker process is the order guaranteed to be “correct”.)

starmap(func, iterable[, chunksize])
Like map() except that the elements of the iterable are expected to be iterables that are unpacked as
arguments.

Hence an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].

New in version 3.3.

starmap_async(func, iterable[, chunksize[, callback[, error_back]]])
A combination of starmap() and map_async() that iterates over iterable of iterables and calls func
with the iterables unpacked. Returns a result object.

New in version 3.3.

close()
Prevents any more tasks from being submitted to the pool. Once all the tasks have been completed the
worker processes will exit.

1.2. Reference 23

multiprocessing Documentation, Release 3.5.0.0

terminate()
Stops the worker processes immediately without completing outstanding work. When the pool object is
garbage collected terminate() will be called immediately.

join()
Wait for the worker processes to exit. One must call close() or terminate() before using join().

class multiprocessing.pool.AsyncResult
The class of the result returned by Pool.apply_async() and Pool.map_async().

get([timeout])
Return the result when it arrives. If timeout is not None and the result does not arrive within timeout
seconds then multiprocessing.TimeoutError is raised. If the remote call raised an exception
then that exception will be reraised by get().

wait([timeout])
Wait until the result is available or until timeout seconds pass.

ready()
Return whether the call has completed.

successful()
Return whether the call completed without raising an exception. Will raise AssertionError if the
result is not ready.

The following example demonstrates the use of a pool:

from multiprocessing import Pool

def f(x):
return x*x

if __name__ == '__main__':
pool = Pool(processes=4) # start 4 worker processes

result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow

print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"

it = pool.imap(f, range(10))
print(next(it)) # prints "0"
print(next(it)) # prints "1"
print(it.next(timeout=1)) # prints "4" unless your computer is *very* slow

import time
result = pool.apply_async(time.sleep, (10,))
print(result.get(timeout=1)) # raises TimeoutError

1.2.10 Listeners and Clients

Usually message passing between processes is done using queues or by using Connection objects returned by
Pipe().

However, the multiprocessing.connection module allows some extra flexibility. It basically gives a high
level message oriented API for dealing with sockets or Windows named pipes. It also has support for digest authenti-
cation using the hmac module, and for polling multiple connections at the same time.

24 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

multiprocessing.connection.deliver_challenge(connection, authkey)
Send a randomly generated message to the other end of the connection and wait for a reply.

If the reply matches the digest of the message using authkey as the key then a welcome message is sent to the
other end of the connection. Otherwise AuthenticationError is raised.

multiprocessing.connection.answerChallenge(connection, authkey)
Receive a message, calculate the digest of the message using authkey as the key, and then send the digest back.

If a welcome message is not received, then AuthenticationError is raised.

multiprocessing.connection.Client(address[, family[, authenticate[, authkey]]])
Attempt to set up a connection to the listener which is using address address, returning a Connection.

The type of the connection is determined by family argument, but this can generally be omitted since it can
usually be inferred from the format of address. (See Address Formats)

If authenticate is True or authkey is a string then digest authentication is used. The key used for authentication
will be either authkey or current_process().authkey) if authkey is None. If authentication fails then
AuthenticationError is raised. See Authentication keys.

class multiprocessing.connection.Listener([address[, family[, backlog[, authenticate[, au-
thkey]]]]])

A wrapper for a bound socket or Windows named pipe which is ‘listening’ for connections.

address is the address to be used by the bound socket or named pipe of the listener object.

Note: If an address of ‘0.0.0.0’ is used, the address will not be a connectable end point on Windows. If you
require a connectable end-point, you should use ‘127.0.0.1’.

family is the type of socket (or named pipe) to use. This can be one of the strings ’AF_INET’ (for a TCP
socket), ’AF_UNIX’ (for a Unix domain socket) or ’AF_PIPE’ (for a Windows named pipe). Of these only
the first is guaranteed to be available. If family is None then the family is inferred from the format of address.
If address is also None then a default is chosen. This default is the family which is assumed to be the fastest
available. See Address Formats. Note that if family is ’AF_UNIX’ and address is None then the socket will be
created in a private temporary directory created using tempfile.mkstemp().

If the listener object uses a socket then backlog (1 by default) is passed to the listen() method of the socket
once it has been bound.

If authenticate is True (False by default) or authkey is not None then digest authentication is used.

If authkey is a string then it will be used as the authentication key; otherwise it must be None.

If authkey is None and authenticate is True then current_process().authkey is used as the authenti-
cation key. If authkey is None and authenticate is False then no authentication is done. If authentication fails
then AuthenticationError is raised. See Authentication keys.

accept()
Accept a connection on the bound socket or named pipe of the listener object and return a Connection
object. If authentication is attempted and fails, then AuthenticationError is raised.

close()
Close the bound socket or named pipe of the listener object. This is called automatically when the listener
is garbage collected. However it is advisable to call it explicitly.

Listener objects have the following read-only properties:

address
The address which is being used by the Listener object.

1.2. Reference 25

multiprocessing Documentation, Release 3.5.0.0

last_accepted
The address from which the last accepted connection came. If this is unavailable then it is None.

multiprocessing.connection.wait(object_list, timeout=None)
Wait till an object in object_list is ready. Returns the list of those objects in object_list which are ready. If
timeout is a float then the call blocks for at most that many seconds. If timeout is None then it will block for an
unlimited period.

For both Unix and Windows, an object can appear in object_list if it is

•a readable Connection object;

•a connected and readable socket.socket object; or

•the sentinel attribute of a Process object.

A connection or socket object is ready when there is data available to be read from it, or the other end has been
closed.

Unix: wait(object_list, timeout) almost equivalent select.select(object_list, [],
[], timeout). The difference is that, if select.select() is interrupted by a signal, it can raise
OSError with an error number of EINTR, whereas wait() will not.

Windows: An item in object_list must either be an integer handle which is waitable (according to the definition
used by the documentation of the Win32 function WaitForMultipleObjects()) or it can be an object
with a fileno() method which returns a socket handle or pipe handle. (Note that pipe handles and socket
handles are not waitable handles.)

New in version 3.3.

The module defines two exceptions:

exception multiprocessing.connection.AuthenticationError
Exception raised when there is an authentication error.

Examples

The following server code creates a listener which uses ’secret password’ as an authentication key. It then
waits for a connection and sends some data to the client:

from multiprocessing.connection import Listener
from array import array

address = ('localhost', 6000) # family is deduced to be 'AF_INET'
listener = Listener(address, authkey=b'secret password')

conn = listener.accept()
print('connection accepted from', listener.last_accepted)

conn.send([2.25, None, 'junk', float])

conn.send_bytes(b'hello')

conn.send_bytes(array('i', [42, 1729]))

conn.close()
listener.close()

The following code connects to the server and receives some data from the server:

from multiprocessing.connection import Client
from array import array

26 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

address = ('localhost', 6000)
conn = Client(address, authkey=b'secret password')

print(conn.recv()) # => [2.25, None, 'junk', float]

print(conn.recv_bytes()) # => 'hello'

arr = array('i', [0, 0, 0, 0, 0])
print(conn.recv_bytes_into(arr)) # => 8
print(arr) # => array('i', [42, 1729, 0, 0, 0])

conn.close()

The following code uses wait() to wait for messages from multiple processes at once:

import time, random
from multiprocessing import Process, Pipe, current_process
from multiprocessing.connection import wait

def foo(w):
for i in range(10):

w.send((i, current_process().name))
w.close()

if __name__ == '__main__':
readers = []

for i in range(4):
r, w = Pipe(duplex=False)
readers.append(r)
p = Process(target=foo, args=(w,))
p.start()
We close the writable end of the pipe now to be sure that
p is the only process which owns a handle for it. This
ensures that when p closes its handle for the writable end,
wait() will promptly report the readable end as being ready.
w.close()

while readers:
for r in wait(readers):

try:
msg = r.recv()

except EOFError:
readers.remove(r)

else:
print(msg)

Address Formats

• An ’AF_INET’ address is a tuple of the form (hostname, port) where hostname is a string and port is
an integer.

• An ’AF_UNIX’ address is a string representing a filename on the filesystem.

• An ’AF_PIPE’ address is a string of the form r’\\.\pipe\PipeName’. To use Client() to con-
nect to a named pipe on a remote computer called ServerName one should use an address of the form
r’\\ServerName\pipe\PipeName’ instead.

1.2. Reference 27

multiprocessing Documentation, Release 3.5.0.0

Note that any string beginning with two backslashes is assumed by default to be an ’AF_PIPE’ address rather than
an ’AF_UNIX’ address.

1.2.11 Authentication keys

When one uses Connection.recv(), the data received is automatically unpickled. Unfortunately unpickling data
from an untrusted source is a security risk. Therefore Listener and Client() use the hmac module to provide
digest authentication.

An authentication key is a string which can be thought of as a password: once a connection is established both ends
will demand proof that the other knows the authentication key. (Demonstrating that both ends are using the same key
does not involve sending the key over the connection.)

If authentication is requested but do authentication key is specified then the return value of
current_process().authkey is used (see Process). This value will automatically inherited by any
Process object that the current process creates. This means that (by default) all processes of a multi-process
program will share a single authentication key which can be used when setting up connections between themselves.

Suitable authentication keys can also be generated by using os.urandom().

1.2.12 Logging

Some support for logging is available. Note, however, that the logging package does not use process shared locks
so it is possible (depending on the handler type) for messages from different processes to get mixed up.

multiprocessing.get_logger()
Returns the logger used by multiprocessing. If necessary, a new one will be created.

When first created the logger has level logging.NOTSET and no default handler. Messages sent to this logger
will not by default propagate to the root logger.

Note that on Windows child processes will only inherit the level of the parent process’s logger – any other
customization of the logger will not be inherited.

multiprocessing.log_to_stderr()
This function performs a call to get_logger() but in addition to returning the logger cre-
ated by get_logger, it adds a handler which sends output to sys.stderr using format
’[%(levelname)s/%(processName)s] %(message)s’.

Below is an example session with logging turned on:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../listener-...'
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0

In addition to having these two logging functions, the multiprocessing also exposes two additional logging level
attributes. These are SUBWARNING and SUBDEBUG. The table below illustrates where theses fit in the normal level
hierarchy.

28 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

Level Numeric value
SUBWARNING 25
SUBDEBUG 5

For a full table of logging levels, see the logging module.

These additional logging levels are used primarily for certain debug messages within the multiprocessing module.
Below is the same example as above, except with SUBDEBUG enabled:

>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(multiprocessing.SUBDEBUG)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../pymp-djGBXN/listener-...'
>>> del m
[SUBDEBUG/MainProcess] finalizer calling ...
[INFO/MainProcess] sending shutdown message to manager
[DEBUG/SyncManager-...] manager received shutdown message
[SUBDEBUG/SyncManager-...] calling <Finalize object, callback=unlink, ...
[SUBDEBUG/SyncManager-...] finalizer calling <built-in function unlink> ...
[SUBDEBUG/SyncManager-...] calling <Finalize object, dead>
[SUBDEBUG/SyncManager-...] finalizer calling <function rmtree at 0x5aa730> ...
[INFO/SyncManager-...] manager exiting with exitcode 0

1.2.13 The multiprocessing.dummy module

multiprocessing.dummy replicates the API of multiprocessing but is no more than a wrapper around the
threading module.

1.3 Programming guidelines

There are certain guidelines and idioms which should be adhered to when using multiprocessing.

1.3.1 All platforms

Avoid shared state

As far as possible one should try to avoid shifting large amounts of data between processes.

It is probably best to stick to using queues or pipes for communication between processes rather than
using the lower level synchronization primitives from the threading module.

Picklability

Ensure that the arguments to the methods of proxies are picklable.

Thread safety of proxies

Do not use a proxy object from more than one thread unless you protect it with a lock.

(There is never a problem with different processes using the same proxy.)

Joining zombie processes

1.3. Programming guidelines 29

multiprocessing Documentation, Release 3.5.0.0

On Unix when a process finishes but has not been joined it becomes a zombie. There should never
be very many because each time a new process starts (or active_children() is called) all com-
pleted processes which have not yet been joined will be joined. Also calling a finished process’s
Process.is_alive() will join the process. Even so it is probably good practice to explicitly join all
the processes that you start.

Better to inherit than pickle/unpickle

On Windows many types from multiprocessing need to be picklable so that child processes can
use them. However, one should generally avoid sending shared objects to other processes using pipes or
queues. Instead you should arrange the program so that a process which needs access to a shared resource
created elsewhere can inherit it from an ancestor process.

Avoid terminating processes

Using the Process.terminate() method to stop a process is liable to cause any shared resources
(such as locks, semaphores, pipes and queues) currently being used by the process to become broken or
unavailable to other processes.

Therefore it is probably best to only consider using Process.terminate() on processes which never
use any shared resources.

Joining processes that use queues

Bear in mind that a process that has put items in a queue will wait before terminating until all the
buffered items are fed by the “feeder” thread to the underlying pipe. (The child process can call the
Queue.cancel_join_thread() method of the queue to avoid this behaviour.)

This means that whenever you use a queue you need to make sure that all items which have been put
on the queue will eventually be removed before the process is joined. Otherwise you cannot be sure that
processes which have put items on the queue will terminate. Remember also that non-daemonic processes
will be automatically be joined.

An example which will deadlock is the following:

from multiprocessing import Process, Queue

def f(q):
q.put('X' * 1000000)

if __name__ == '__main__':
queue = Queue()
p = Process(target=f, args=(queue,))
p.start()
p.join() # this deadlocks
obj = queue.get()

A fix here would be to swap the last two lines round (or simply remove the p.join() line).

Explicitly pass resources to child processes

On Unix a child process can make use of a shared resource created in a parent process using a global
resource. However, it is better to pass the object as an argument to the constructor for the child process.

Apart from making the code (potentially) compatible with Windows this also ensures that as long as the
child process is still alive the object will not be garbage collected in the parent process. This might be
important if some resource is freed when the object is garbage collected in the parent process.

So for instance

from multiprocessing import Process, Lock

30 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

def f():
... do something using "lock" ...

if __name__ == '__main__':
lock = Lock()
for i in range(10):

Process(target=f).start()

should be rewritten as

from multiprocessing import Process, Lock

def f(l):
... do something using "l" ...

if __name__ == '__main__':
lock = Lock()
for i in range(10):

Process(target=f, args=(lock,)).start()

Beware of replacing sys.stdin with a “file like object”

multiprocessing originally unconditionally called:

os.close(sys.stdin.fileno())

in the multiprocessing.Process._bootstrap() method — this resulted in issues with
processes-in-processes. This has been changed to:

sys.stdin.close()
sys.stdin = open(os.devnull)

Which solves the fundamental issue of processes colliding with each other resulting in a bad file descriptor
error, but introduces a potential danger to applications which replace sys.stdin() with a “file-like
object” with output buffering. This danger is that if multiple processes call close() on this file-like
object, it could result in the same data being flushed to the object multiple times, resulting in corruption.

If you write a file-like object and implement your own caching, you can make it fork-safe by storing the
pid whenever you append to the cache, and discarding the cache when the pid changes. For example:

@property
def cache(self):

pid = os.getpid()
if pid != self._pid:

self._pid = pid
self._cache = []

return self._cache

For more information, see :issue:‘5155‘, :issue:‘5313‘ and :issue:‘5331‘

1.3.2 Windows

Since Windows lacks os.fork() it has a few extra restrictions:

More picklability

Ensure that all arguments to Process.__init__() are picklable. This means, in particular, that
bound or unbound methods cannot be used directly as the target argument on Windows — just define
a function and use that instead.

1.3. Programming guidelines 31

multiprocessing Documentation, Release 3.5.0.0

Also, if you subclass Process then make sure that instances will be picklable when the
Process.start() method is called.

Global variables

Bear in mind that if code run in a child process tries to access a global variable, then the value it sees (if
any) may not be the same as the value in the parent process at the time that Process.start() was
called.

However, global variables which are just module level constants cause no problems.

Safe importing of main module

Make sure that the main module can be safely imported by a new Python interpreter without causing
unintended side effects (such a starting a new process).

For example, under Windows running the following module would fail with a RuntimeError:

from multiprocessing import Process

def foo():
print('hello')

p = Process(target=foo)
p.start()

Instead one should protect the “entry point” of the program by using if __name__ ==
’__main__’: as follows:

from multiprocessing import Process, freeze_support

def foo():
print('hello')

if __name__ == '__main__':
freeze_support()
p = Process(target=foo)
p.start()

(The freeze_support() line can be omitted if the program will be run normally instead of frozen.)

This allows the newly spawned Python interpreter to safely import the module and then run the module’s
foo() function.

Similar restrictions apply if a pool or manager is created in the main module.

1.4 Examples

Demonstration of how to create and use customized managers and proxies:

#
This module shows how to use arbitrary callables with a subclass of
`BaseManager`.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy

32 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

import operator

##

class Foo(object):
def f(self):

print 'you called Foo.f()'
def g(self):

print 'you called Foo.g()'
def _h(self):

print 'you called Foo._h()'

A simple generator function
def baz():

for i in xrange(10):
yield i*i

Proxy type for generator objects
class GeneratorProxy(BaseProxy):

exposed = ('next', '__next__')
def __iter__(self):

return self
def next(self):

return self._callmethod('next')
def __next__(self):

return self._callmethod('__next__')

Function to return the operator module
def get_operator_module():

return operator

##

class MyManager(BaseManager):
pass

register the Foo class; make `f()` and `g()` accessible via proxy
MyManager.register('Foo1', Foo)

register the Foo class; make `g()` and `_h()` accessible via proxy
MyManager.register('Foo2', Foo, exposed=('g', '_h'))

register the generator function baz; use `GeneratorProxy` to make proxies
MyManager.register('baz', baz, proxytype=GeneratorProxy)

register get_operator_module(); make public functions accessible via proxy
MyManager.register('operator', get_operator_module)

##

def test():
manager = MyManager()
manager.start()

print '-' * 20

f1 = manager.Foo1()
f1.f()

1.4. Examples 33

multiprocessing Documentation, Release 3.5.0.0

f1.g()
assert not hasattr(f1, '_h')
assert sorted(f1._exposed_) == sorted(['f', 'g'])

print '-' * 20

f2 = manager.Foo2()
f2.g()
f2._h()
assert not hasattr(f2, 'f')
assert sorted(f2._exposed_) == sorted(['g', '_h'])

print '-' * 20

it = manager.baz()
for i in it:

print '<%d>' % i,
print

print '-' * 20

op = manager.operator()
print 'op.add(23, 45) =', op.add(23, 45)
print 'op.pow(2, 94) =', op.pow(2, 94)
print 'op.getslice(range(10), 2, 6) =', op.getslice(range(10), 2, 6)
print 'op.repeat(range(5), 3) =', op.repeat(range(5), 3)
print 'op._exposed_ =', op._exposed_

##

if __name__ == '__main__':
freeze_support()
test()

Using Pool:

#
A test of `multiprocessing.Pool` class
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import multiprocessing
import time
import random
import sys

#
Functions used by test code
#

def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % (

multiprocessing.current_process().name,
func.__name__, args, result
)

34 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

def calculatestar(args):
return calculate(*args)

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

def f(x):
return 1.0 / (x-5.0)

def pow3(x):
return x**3

def noop(x):
pass

#
Test code
#

def test():
print 'cpu_count() = %d\n' % multiprocessing.cpu_count()

#
Create pool
#

PROCESSES = 4
print 'Creating pool with %d processes\n' % PROCESSES
pool = multiprocessing.Pool(PROCESSES)
print 'pool = %s' % pool
print

#
Tests
#

TASKS = [(mul, (i, 7)) for i in range(10)] + \
[(plus, (i, 8)) for i in range(10)]

results = [pool.apply_async(calculate, t) for t in TASKS]
imap_it = pool.imap(calculatestar, TASKS)
imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)

print 'Ordered results using pool.apply_async():'
for r in results:

print '\t', r.get()
print

print 'Ordered results using pool.imap():'
for x in imap_it:

print '\t', x
print

1.4. Examples 35

multiprocessing Documentation, Release 3.5.0.0

print 'Unordered results using pool.imap_unordered():'
for x in imap_unordered_it:

print '\t', x
print

print 'Ordered results using pool.map() --- will block till complete:'
for x in pool.map(calculatestar, TASKS):

print '\t', x
print

#
Simple benchmarks
#

N = 100000
print 'def pow3(x): return x**3'

t = time.time()
A = map(pow3, xrange(N))
print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \

(N, time.time() - t)

t = time.time()
B = pool.map(pow3, xrange(N))
print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \

(N, time.time() - t)

t = time.time()
C = list(pool.imap(pow3, xrange(N), chunksize=N//8))
print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \

' seconds' % (N, N//8, time.time() - t)

assert A == B == C, (len(A), len(B), len(C))
print

L = [None] * 1000000
print 'def noop(x): pass'
print 'L = [None] * 1000000'

t = time.time()
A = map(noop, L)
print '\tmap(noop, L):\n\t\t%s seconds' % \

(time.time() - t)

t = time.time()
B = pool.map(noop, L)
print '\tpool.map(noop, L):\n\t\t%s seconds' % \

(time.time() - t)

t = time.time()
C = list(pool.imap(noop, L, chunksize=len(L)//8))
print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \

(len(L)//8, time.time() - t)

assert A == B == C, (len(A), len(B), len(C))
print

del A, B, C, L

36 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

#
Test error handling
#

print 'Testing error handling:'

try:
print pool.apply(f, (5,))

except ZeroDivisionError:
print '\tGot ZeroDivisionError as expected from pool.apply()'

else:
raise AssertionError, 'expected ZeroDivisionError'

try:
print pool.map(f, range(10))

except ZeroDivisionError:
print '\tGot ZeroDivisionError as expected from pool.map()'

else:
raise AssertionError, 'expected ZeroDivisionError'

try:
print list(pool.imap(f, range(10)))

except ZeroDivisionError:
print '\tGot ZeroDivisionError as expected from list(pool.imap())'

else:
raise AssertionError, 'expected ZeroDivisionError'

it = pool.imap(f, range(10))
for i in range(10):

try:
x = it.next()

except ZeroDivisionError:
if i == 5:

pass
except StopIteration:

break
else:

if i == 5:
raise AssertionError, 'expected ZeroDivisionError'

assert i == 9
print '\tGot ZeroDivisionError as expected from IMapIterator.next()'
print

#
Testing timeouts
#

print 'Testing ApplyResult.get() with timeout:',
res = pool.apply_async(calculate, TASKS[0])
while 1:

sys.stdout.flush()
try:

sys.stdout.write('\n\t%s' % res.get(0.02))
break

except multiprocessing.TimeoutError:
sys.stdout.write('.')

print

1.4. Examples 37

multiprocessing Documentation, Release 3.5.0.0

print

print 'Testing IMapIterator.next() with timeout:',
it = pool.imap(calculatestar, TASKS)
while 1:

sys.stdout.flush()
try:

sys.stdout.write('\n\t%s' % it.next(0.02))
except StopIteration:

break
except multiprocessing.TimeoutError:

sys.stdout.write('.')
print
print

#
Testing callback
#

print 'Testing callback:'

A = []
B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

r = pool.apply_async(mul, (7, 8), callback=A.append)
r.wait()

r = pool.map_async(pow3, range(10), callback=A.extend)
r.wait()

if A == B:
print '\tcallbacks succeeded\n'

else:
print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)

#
Check there are no outstanding tasks
#

assert not pool._cache, 'cache = %r' % pool._cache

#
Check close() methods
#

print 'Testing close():'

for worker in pool._pool:
assert worker.is_alive()

result = pool.apply_async(time.sleep, [0.5])
pool.close()
pool.join()

assert result.get() is None

for worker in pool._pool:
assert not worker.is_alive()

38 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

print '\tclose() succeeded\n'

#
Check terminate() method
#

print 'Testing terminate():'

pool = multiprocessing.Pool(2)
DELTA = 0.1
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]
pool.terminate()
pool.join()

for worker in pool._pool:
assert not worker.is_alive()

print '\tterminate() succeeded\n'

#
Check garbage collection
#

print 'Testing garbage collection:'

pool = multiprocessing.Pool(2)
DELTA = 0.1
processes = pool._pool
ignore = pool.apply(pow3, [2])
results = [pool.apply_async(time.sleep, [DELTA]) for i in range(100)]

results = pool = None

time.sleep(DELTA * 2)

for worker in processes:
assert not worker.is_alive()

print '\tgarbage collection succeeded\n'

if __name__ == '__main__':
multiprocessing.freeze_support()

assert len(sys.argv) in (1, 2)

if len(sys.argv) == 1 or sys.argv[1] == 'processes':
print ' Using processes '.center(79, '-')

elif sys.argv[1] == 'threads':
print ' Using threads '.center(79, '-')
import multiprocessing.dummy as multiprocessing

else:
print 'Usage:\n\t%s [processes | threads]' % sys.argv[0]
raise SystemExit(2)

test()

1.4. Examples 39

multiprocessing Documentation, Release 3.5.0.0

Synchronization types like locks, conditions and queues:

#
A test file for the `multiprocessing` package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, random
from Queue import Empty

import multiprocessing # may get overwritten

TEST_VALUE

def value_func(running, mutex):
random.seed()
time.sleep(random.random()*4)

mutex.acquire()
print '\n\t\t\t' + str(multiprocessing.current_process()) + ' has finished'
running.value -= 1
mutex.release()

def test_value():
TASKS = 10
running = multiprocessing.Value('i', TASKS)
mutex = multiprocessing.Lock()

for i in range(TASKS):
p = multiprocessing.Process(target=value_func, args=(running, mutex))
p.start()

while running.value > 0:
time.sleep(0.08)
mutex.acquire()
print running.value,
sys.stdout.flush()
mutex.release()

print
print 'No more running processes'

TEST_QUEUE

def queue_func(queue):
for i in range(30):

time.sleep(0.5 * random.random())
queue.put(i*i)

queue.put('STOP')

def test_queue():
q = multiprocessing.Queue()

p = multiprocessing.Process(target=queue_func, args=(q,))
p.start()

40 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

o = None
while o != 'STOP':

try:
o = q.get(timeout=0.3)
print o,
sys.stdout.flush()

except Empty:
print 'TIMEOUT'

print

TEST_CONDITION

def condition_func(cond):
cond.acquire()
print '\t' + str(cond)
time.sleep(2)
print '\tchild is notifying'
print '\t' + str(cond)
cond.notify()
cond.release()

def test_condition():
cond = multiprocessing.Condition()

p = multiprocessing.Process(target=condition_func, args=(cond,))
print cond

cond.acquire()
print cond
cond.acquire()
print cond

p.start()

print 'main is waiting'
cond.wait()
print 'main has woken up'

print cond
cond.release()
print cond
cond.release()

p.join()
print cond

TEST_SEMAPHORE

def semaphore_func(sema, mutex, running):
sema.acquire()

mutex.acquire()
running.value += 1
print running.value, 'tasks are running'
mutex.release()

1.4. Examples 41

multiprocessing Documentation, Release 3.5.0.0

random.seed()
time.sleep(random.random()*2)

mutex.acquire()
running.value -= 1
print '%s has finished' % multiprocessing.current_process()
mutex.release()

sema.release()

def test_semaphore():
sema = multiprocessing.Semaphore(3)
mutex = multiprocessing.RLock()
running = multiprocessing.Value('i', 0)

processes = [
multiprocessing.Process(target=semaphore_func,

args=(sema, mutex, running))
for i in range(10)
]

for p in processes:
p.start()

for p in processes:
p.join()

TEST_JOIN_TIMEOUT

def join_timeout_func():
print '\tchild sleeping'
time.sleep(5.5)
print '\n\tchild terminating'

def test_join_timeout():
p = multiprocessing.Process(target=join_timeout_func)
p.start()

print 'waiting for process to finish'

while 1:
p.join(timeout=1)
if not p.is_alive():

break
print '.',
sys.stdout.flush()

TEST_EVENT

def event_func(event):
print '\t%r is waiting' % multiprocessing.current_process()
event.wait()
print '\t%r has woken up' % multiprocessing.current_process()

def test_event():
event = multiprocessing.Event()

42 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

processes = [multiprocessing.Process(target=event_func, args=(event,))
for i in range(5)]

for p in processes:
p.start()

print 'main is sleeping'
time.sleep(2)

print 'main is setting event'
event.set()

for p in processes:
p.join()

TEST_SHAREDVALUES

def sharedvalues_func(values, arrays, shared_values, shared_arrays):
for i in range(len(values)):

v = values[i][1]
sv = shared_values[i].value
assert v == sv

for i in range(len(values)):
a = arrays[i][1]
sa = list(shared_arrays[i][:])
assert a == sa

print 'Tests passed'

def test_sharedvalues():
values = [

('i', 10),
('h', -2),
('d', 1.25)
]

arrays = [
('i', range(100)),
('d', [0.25 * i for i in range(100)]),
('H', range(1000))
]

shared_values = [multiprocessing.Value(id, v) for id, v in values]
shared_arrays = [multiprocessing.Array(id, a) for id, a in arrays]

p = multiprocessing.Process(
target=sharedvalues_func,
args=(values, arrays, shared_values, shared_arrays)
)

p.start()
p.join()

assert p.exitcode == 0

####

1.4. Examples 43

multiprocessing Documentation, Release 3.5.0.0

def test(namespace=multiprocessing):
global multiprocessing

multiprocessing = namespace

for func in [test_value, test_queue, test_condition,
test_semaphore, test_join_timeout, test_event,
test_sharedvalues]:

print '\n\t######## %s\n' % func.__name__
func()

ignore = multiprocessing.active_children() # cleanup any old processes
if hasattr(multiprocessing, '_debug_info'):

info = multiprocessing._debug_info()
if info:

print info
raise ValueError, 'there should be no positive refcounts left'

if __name__ == '__main__':
multiprocessing.freeze_support()

assert len(sys.argv) in (1, 2)

if len(sys.argv) == 1 or sys.argv[1] == 'processes':
print ' Using processes '.center(79, '-')
namespace = multiprocessing

elif sys.argv[1] == 'manager':
print ' Using processes and a manager '.center(79, '-')
namespace = multiprocessing.Manager()
namespace.Process = multiprocessing.Process
namespace.current_process = multiprocessing.current_process
namespace.active_children = multiprocessing.active_children

elif sys.argv[1] == 'threads':
print ' Using threads '.center(79, '-')
import multiprocessing.dummy as namespace

else:
print 'Usage:\n\t%s [processes | manager | threads]' % sys.argv[0]
raise SystemExit, 2

test(namespace)

An example showing how to use queues to feed tasks to a collection of worker processes and collect the results:

#
Simple example which uses a pool of workers to carry out some tasks.
#
Notice that the results will probably not come out of the output
queue in the same in the same order as the corresponding tasks were
put on the input queue. If it is important to get the results back
in the original order then consider using `Pool.map()` or
`Pool.imap()` (which will save on the amount of code needed anyway).
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

44 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

import time
import random

from multiprocessing import Process, Queue, current_process, freeze_support

#
Function run by worker processes
#

def worker(input, output):
for func, args in iter(input.get, 'STOP'):

result = calculate(func, args)
output.put(result)

#
Function used to calculate result
#

def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % \

(current_process().name, func.__name__, args, result)

#
Functions referenced by tasks
#

def mul(a, b):
time.sleep(0.5*random.random())
return a * b

def plus(a, b):
time.sleep(0.5*random.random())
return a + b

#
#
#

def test():
NUMBER_OF_PROCESSES = 4
TASKS1 = [(mul, (i, 7)) for i in range(20)]
TASKS2 = [(plus, (i, 8)) for i in range(10)]

Create queues
task_queue = Queue()
done_queue = Queue()

Submit tasks
for task in TASKS1:

task_queue.put(task)

Start worker processes
for i in range(NUMBER_OF_PROCESSES):

Process(target=worker, args=(task_queue, done_queue)).start()

Get and print results
print 'Unordered results:'

1.4. Examples 45

multiprocessing Documentation, Release 3.5.0.0

for i in range(len(TASKS1)):
print '\t', done_queue.get()

Add more tasks using `put()`
for task in TASKS2:

task_queue.put(task)

Get and print some more results
for i in range(len(TASKS2)):

print '\t', done_queue.get()

Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):

task_queue.put('STOP')

if __name__ == '__main__':
freeze_support()
test()

An example of how a pool of worker processes can each run a SimpleHTTPRequestHandler instance while
sharing a single listening socket.

#
Example where a pool of http servers share a single listening socket
#
On Windows this module depends on the ability to pickle a socket
object so that the worker processes can inherit a copy of the server
object. (We import `multiprocessing.reduction` to enable this pickling.)
#
Not sure if we should synchronize access to `socket.accept()` method by
using a process-shared lock -- does not seem to be necessary.
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import os
import sys

from multiprocessing import Process, current_process, freeze_support
from BaseHTTPServer import HTTPServer
from SimpleHTTPServer import SimpleHTTPRequestHandler

if sys.platform == 'win32':
import multiprocessing.reduction # make sockets pickable/inheritable

def note(format, *args):
sys.stderr.write('[%s]\t%s\n' % (current_process().name, format%args))

class RequestHandler(SimpleHTTPRequestHandler):
we override log_message() to show which process is handling the request
def log_message(self, format, *args):

note(format, *args)

def serve_forever(server):

46 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

note('starting server')
try:

server.serve_forever()
except KeyboardInterrupt:

pass

def runpool(address, number_of_processes):
create a single server object -- children will each inherit a copy
server = HTTPServer(address, RequestHandler)

create child processes to act as workers
for i in range(number_of_processes-1):

Process(target=serve_forever, args=(server,)).start()

main process also acts as a worker
serve_forever(server)

def test():
DIR = os.path.join(os.path.dirname(__file__), '..')
ADDRESS = ('localhost', 8000)
NUMBER_OF_PROCESSES = 4

print 'Serving at http://%s:%d using %d worker processes' % \
(ADDRESS[0], ADDRESS[1], NUMBER_OF_PROCESSES)

print 'To exit press Ctrl-' + ['C', 'Break'][sys.platform=='win32']

os.chdir(DIR)
runpool(ADDRESS, NUMBER_OF_PROCESSES)

if __name__ == '__main__':
freeze_support()
test()

Some simple benchmarks comparing multiprocessing with threading:

#
Simple benchmarks for the multiprocessing package
#
Copyright (c) 2006-2008, R Oudkerk
All rights reserved.
#

import time, sys, multiprocessing, threading, Queue, gc

if sys.platform == 'win32':
_timer = time.clock

else:
_timer = time.time

delta = 1

TEST_QUEUESPEED

def queuespeed_func(q, c, iterations):
a = '0' * 256

1.4. Examples 47

multiprocessing Documentation, Release 3.5.0.0

c.acquire()
c.notify()
c.release()

for i in xrange(iterations):
q.put(a)

q.put('STOP')

def test_queuespeed(Process, q, c):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

p = Process(target=queuespeed_func, args=(q, c, iterations))
c.acquire()
p.start()
c.wait()
c.release()

result = None
t = _timer()

while result != 'STOP':
result = q.get()

elapsed = _timer() - t

p.join()

print iterations, 'objects passed through the queue in', elapsed, 'seconds'
print 'average number/sec:', iterations/elapsed

TEST_PIPESPEED

def pipe_func(c, cond, iterations):
a = '0' * 256
cond.acquire()
cond.notify()
cond.release()

for i in xrange(iterations):
c.send(a)

c.send('STOP')

def test_pipespeed():
c, d = multiprocessing.Pipe()
cond = multiprocessing.Condition()
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

48 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

p = multiprocessing.Process(target=pipe_func,
args=(d, cond, iterations))

cond.acquire()
p.start()
cond.wait()
cond.release()

result = None
t = _timer()

while result != 'STOP':
result = c.recv()

elapsed = _timer() - t
p.join()

print iterations, 'objects passed through connection in',elapsed,'seconds'
print 'average number/sec:', iterations/elapsed

TEST_SEQSPEED

def test_seqspeed(seq):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

t = _timer()

for i in xrange(iterations):
a = seq[5]

elapsed = _timer()-t

print iterations, 'iterations in', elapsed, 'seconds'
print 'average number/sec:', iterations/elapsed

TEST_LOCK

def test_lockspeed(l):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

t = _timer()

for i in xrange(iterations):
l.acquire()
l.release()

elapsed = _timer()-t

print iterations, 'iterations in', elapsed, 'seconds'

1.4. Examples 49

multiprocessing Documentation, Release 3.5.0.0

print 'average number/sec:', iterations/elapsed

TEST_CONDITION

def conditionspeed_func(c, N):
c.acquire()
c.notify()

for i in xrange(N):
c.wait()
c.notify()

c.release()

def test_conditionspeed(Process, c):
elapsed = 0
iterations = 1

while elapsed < delta:
iterations *= 2

c.acquire()
p = Process(target=conditionspeed_func, args=(c, iterations))
p.start()

c.wait()

t = _timer()

for i in xrange(iterations):
c.notify()
c.wait()

elapsed = _timer()-t

c.release()
p.join()

print iterations * 2, 'waits in', elapsed, 'seconds'
print 'average number/sec:', iterations * 2 / elapsed

####

def test():
manager = multiprocessing.Manager()

gc.disable()

print '\n\t######## testing Queue.Queue\n'
test_queuespeed(threading.Thread, Queue.Queue(),

threading.Condition())
print '\n\t######## testing multiprocessing.Queue\n'
test_queuespeed(multiprocessing.Process, multiprocessing.Queue(),

multiprocessing.Condition())
print '\n\t######## testing Queue managed by server process\n'
test_queuespeed(multiprocessing.Process, manager.Queue(),

manager.Condition())

50 Chapter 1. multiprocessing — Process-based parallelism

multiprocessing Documentation, Release 3.5.0.0

print '\n\t######## testing multiprocessing.Pipe\n'
test_pipespeed()

print

print '\n\t######## testing list\n'
test_seqspeed(range(10))
print '\n\t######## testing list managed by server process\n'
test_seqspeed(manager.list(range(10)))
print '\n\t######## testing Array("i", ..., lock=False)\n'
test_seqspeed(multiprocessing.Array('i', range(10), lock=False))
print '\n\t######## testing Array("i", ..., lock=True)\n'
test_seqspeed(multiprocessing.Array('i', range(10), lock=True))

print

print '\n\t######## testing threading.Lock\n'
test_lockspeed(threading.Lock())
print '\n\t######## testing threading.RLock\n'
test_lockspeed(threading.RLock())
print '\n\t######## testing multiprocessing.Lock\n'
test_lockspeed(multiprocessing.Lock())
print '\n\t######## testing multiprocessing.RLock\n'
test_lockspeed(multiprocessing.RLock())
print '\n\t######## testing lock managed by server process\n'
test_lockspeed(manager.Lock())
print '\n\t######## testing rlock managed by server process\n'
test_lockspeed(manager.RLock())

print

print '\n\t######## testing threading.Condition\n'
test_conditionspeed(threading.Thread, threading.Condition())
print '\n\t######## testing multiprocessing.Condition\n'
test_conditionspeed(multiprocessing.Process, multiprocessing.Condition())
print '\n\t######## testing condition managed by a server process\n'
test_conditionspeed(multiprocessing.Process, manager.Condition())

gc.enable()

if __name__ == '__main__':
multiprocessing.freeze_support()
test()

1.4. Examples 51

multiprocessing Documentation, Release 3.5.0.0

52 Chapter 1. multiprocessing — Process-based parallelism

CHAPTER 2

Glossary

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to
run on a virtual machine that executes the machine code corresponding to each bytecode.

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

GIL See global interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread executes in the CPython
virtual machine at a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

53

multiprocessing Documentation, Release 3.5.0.0

54 Chapter 2. Glossary

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

55

multiprocessing Documentation, Release 3.5.0.0

56 Chapter 3. Indices and tables

Python Module Index

m
multiprocessing, 3
multiprocessing.connection, 24
multiprocessing.dummy, 29
multiprocessing.managers, 17
multiprocessing.pool, 22
multiprocessing.sharedctypes, 15

57

multiprocessing Documentation, Release 3.5.0.0

58 Python Module Index

Index

Symbols
__repr__() (multiprocessing.managers.BaseProxy

method), 22
__str__() (multiprocessing.managers.BaseProxy

method), 22
_callmethod() (multiprocessing.managers.BaseProxy

method), 21
_getvalue() (multiprocessing.managers.BaseProxy

method), 22

A
accept() (multiprocessing.connection.Listener method),

25
active_children() (in module multiprocessing), 11
address (multiprocessing.connection.Listener attribute),

25
address (multiprocessing.managers.BaseManager at-

tribute), 18
answerChallenge() (in module multiprocess-

ing.connection), 25
apply() (multiprocessing.pool.multiprocessing.Pool

method), 22
apply_async() (multiprocess-

ing.pool.multiprocessing.Pool method),
22

Array() (in module multiprocessing), 15
Array() (in module multiprocessing.sharedctypes), 15
Array() (multiprocessing.managers.SyncManager

method), 19
AsyncResult (class in multiprocessing.pool), 24
AuthenticationError, 26
authkey (multiprocessing.Process attribute), 8

B
BaseManager (class in multiprocessing.managers), 17
BaseProxy (class in multiprocessing.managers), 21
BoundedSemaphore (class in multiprocessing), 14
BoundedSemaphore() (multiprocess-

ing.managers.SyncManager method), 18
BufferTooShort, 9

bytecode, 53

C
cancel_join_thread() (multiprocessing.Queue method),

11
Client() (in module multiprocessing.connection), 25
close() (multiprocessing.Connection method), 13
close() (multiprocessing.connection.Listener method), 25
close() (multiprocessing.pool.multiprocessing.Pool

method), 23
close() (multiprocessing.Queue method), 11
Condition (class in multiprocessing), 14
Condition() (multiprocessing.managers.SyncManager

method), 18
connect() (multiprocessing.managers.BaseManager

method), 17
Connection (class in multiprocessing), 12
copy() (in module multiprocessing.sharedctypes), 16
cpu_count() (in module multiprocessing), 11
CPython, 53
current_process() (in module multiprocessing), 12

D
daemon (multiprocessing.Process attribute), 8
deliver_challenge() (in module multiprocess-

ing.connection), 24
dict() (multiprocessing.managers.SyncManager method),

19

E
empty() (multiprocessing.Queue method), 10
empty() (multiprocessing.SimpleQueue method), 11
Event (class in multiprocessing), 14
Event() (multiprocessing.managers.SyncManager

method), 18
exitcode (multiprocessing.Process attribute), 8

F
fileno() (multiprocessing.Connection method), 13
freeze_support() (in module multiprocessing), 12

59

multiprocessing Documentation, Release 3.5.0.0

full() (multiprocessing.Queue method), 10

G
get() (multiprocessing.pool.AsyncResult method), 24
get() (multiprocessing.Queue method), 10
get() (multiprocessing.SimpleQueue method), 11
get_logger() (in module multiprocessing), 28
get_no_wait() (multiprocessing.Queue method), 10
get_nowait() (multiprocessing.Queue method), 10
get_server() (multiprocessing.managers.BaseManager

method), 17
GIL, 53
global interpreter lock, 53

I
imap() (multiprocessing.pool.multiprocessing.Pool

method), 23
imap_unordered() (multiprocess-

ing.pool.multiprocessing.Pool method),
23

is_alive() (multiprocessing.Process method), 8

J
join() (multiprocessing.JoinableQueue method), 11
join() (multiprocessing.pool.multiprocessing.Pool

method), 24
join() (multiprocessing.Process method), 8
join_thread() (multiprocessing.Queue method), 11
JoinableQueue (class in multiprocessing), 11

L
last_accepted (multiprocessing.connection.Listener at-

tribute), 25
list() (multiprocessing.managers.SyncManager method),

19
Listener (class in multiprocessing.connection), 25
Lock (class in multiprocessing), 14
Lock() (multiprocessing.managers.SyncManager

method), 18
log_to_stderr() (in module multiprocessing), 28

M
map() (multiprocessing.pool.multiprocessing.Pool

method), 23
map_async() (multiprocessing.pool.multiprocessing.Pool

method), 23
multiprocessing (module), 3
multiprocessing.connection (module), 24
multiprocessing.dummy (module), 29
multiprocessing.Manager() (in module multiprocess-

ing.sharedctypes), 17
multiprocessing.managers (module), 17
multiprocessing.Pool (class in multiprocessing.pool), 22

multiprocessing.pool (module), 22
multiprocessing.sharedctypes (module), 15

N
name (multiprocessing.Process attribute), 8
Namespace() (multiprocessing.managers.SyncManager

method), 19

P
pid (multiprocessing.Process attribute), 8
Pipe() (in module multiprocessing), 10
poll() (multiprocessing.Connection method), 13
Process (class in multiprocessing), 7
put() (multiprocessing.Queue method), 10
put() (multiprocessing.SimpleQueue method), 11
put_nowait() (multiprocessing.Queue method), 10

Q
qsize() (multiprocessing.Queue method), 10
Queue (class in multiprocessing), 10
Queue() (multiprocessing.managers.SyncManager

method), 19

R
RawArray() (in module multiprocessing.sharedctypes),

15
RawValue() (in module multiprocessing.sharedctypes),

15
ready() (multiprocessing.pool.AsyncResult method), 24
recv() (multiprocessing.Connection method), 12
recv_bytes() (multiprocessing.Connection method), 13
recv_bytes_into() (multiprocessing.Connection method),

13
register() (multiprocessing.managers.BaseManager

method), 18
RLock (class in multiprocessing), 14
RLock() (multiprocessing.managers.SyncManager

method), 19
run() (multiprocessing.Process method), 7

S
Semaphore (class in multiprocessing), 14
Semaphore() (multiprocessing.managers.SyncManager

method), 19
send() (multiprocessing.Connection method), 12
send_bytes() (multiprocessing.Connection method), 13
sentinel (multiprocessing.Process attribute), 8
set_executable() (in module multiprocessing), 12
shutdown() (multiprocessing.managers.BaseManager

method), 18
SimpleQueue (class in multiprocessing), 11
starmap() (multiprocessing.pool.multiprocessing.Pool

method), 23

60 Index

multiprocessing Documentation, Release 3.5.0.0

starmap_async() (multiprocess-
ing.pool.multiprocessing.Pool method),
23

start() (multiprocessing.managers.BaseManager method),
17

start() (multiprocessing.Process method), 7
successful() (multiprocessing.pool.AsyncResult method),

24
synchronized() (in module multiprocess-

ing.sharedctypes), 16
SyncManager (class in multiprocessing.managers), 18

T
task_done() (multiprocessing.JoinableQueue method), 11
terminate() (multiprocessing.pool.multiprocessing.Pool

method), 23
terminate() (multiprocessing.Process method), 9

V
Value() (in module multiprocessing), 14
Value() (in module multiprocessing.sharedctypes), 16
Value() (multiprocessing.managers.SyncManager

method), 19
virtual machine, 53

W
wait() (in module multiprocessing.connection), 26
wait() (multiprocessing.pool.AsyncResult method), 24

Index 61

	multiprocessing — Process-based parallelism
	Introduction
	Reference
	Programming guidelines
	Examples

	Glossary
	Indices and tables
	Python Module Index

